

BATRAW

"Recycling of end-of-life battery packs for domestic raw material supply chains and enhanced circular economy"

Miguel Aguilar 12/12/2024 LEITAT Technological Center

Pilot 2: Recycling and RM recovery (ORANO, France)

}

Co-funded by the European Union

UK Research and Innovation

Polymer inclusion membrane

•Polymer inclusion membranes (PIMs) are dense and hydrophobic.

•The extractant (ionic liquid) is **embedded within the polymer structure**.

•The extractant forms a **complex with the target metal** present in the feed solution.

•Through **diffusion**, the metal is transferred across the membrane to a stripping solution (in an acidic or basic medium).

•This process can theoretically continue until **all the target metal is extracted**, as long as the initial conditions are maintained.

Liquid-liquid extraction

Co-funded by the European Union

UK Research and Innovation

Liquid-liquid extraction: extractant selection

- > 100 % extraction has been achieved for Co (Cyanex 272/kerosene 1:1) and Ni (LIX84I/kerosene 1:1)
- All the studied extractants evaluated by L-L extraction had enhanced extraction capacity in the presence of acetic acid/acetate buffer.

the European Union

UK Research and Innovation

Membrane fabrication

More tan 150 PIMs with several compositions were developed

Polymer inclusion membrane developing Membrane fabrication

UK Research

and Innovation

Rì

the European Union

PIM evaluation

Membrane	Composition	Thickness (µm)	% Co(II) Extraction / 30h	\ /
PIM-4.5a-10mL	25.6% CTA + 29.3% Cyanex 272 + 39.9% 2NPOE + 5.2% TBP	52 ± 7	55	-
PIM-4.5-a.1-10mL	<u> </u>	41 ± 8	74	
PIM-4.5-a.1-20mL	25.5% CTA + 35% Cyanex 272 + 34.2% 2NPOE + 5.3%TBP	71 ± 12	45	
PIM-4.5-a.2-10mL	<u>↑TBP</u>	37 ± 7	61	
PIM-4.5-a.2-20mL	25.5% CTA + 29.3% Cyanex 272 + 35.2% 2NPOE + 10% TBP	85 ± 12	64	

Increasing Cyanex 272 content in the PIM, increases the Co extraction from 55 % to 74 %, but also increase the precipitation of $[Co-Cyanex272]_n$.

Feed and strip solutions after experiment with blue precipitation.

Experimental conditions

pH 6 (acetic acid/acetate

buffer)

Feed: 0.0085 M Co

Strip: H₂SO₄ 1.5 M Flow: 152 mL/min

UK Research and Innovation

CO	Extra Evalu	actant uation	PIM deve chara	elopment an cterization	d	PIM evaluatio	n
58.933	Membrane	Composition	Thickness (μm)	% Extraction Co(II) / 30h	Initial flux J _o (mol/m²·h)		<u>Experim</u> conditic
	PVC-4.5-A-10mL-2	42.5% PVC + 48.7% Cyanex 272 + 8.8% TBP	16 ± 3	27	0.036		<u>Feed</u> : 0.0 pH 6 (ac
	PVC-4.5-E-10mL-2	26% PVC + 29% Cyanex 272 + 5% TBP + 40% DOA	25 ± 3	48	0.051	CYANEX 272	acid/ace buffer) Strip: He
	PVC-4.5-G-10mL-1	26% PVC + 29% Cyanex 272 + 5% TBP + 40% BTS	38 ± 7	82	0.102		<u>Flow</u> : 15
	PVC-4.5-A-30mL-2	42.5% PVC + 48.7% Cyanex 272 + 8.8% TBP	54 ± 16	22	0.020		
	PVC-4.5-B-30mL-1	26% PVC + 29% Cyanex 272 + 5% TBP + 40% 2NPOE	63 ± 15	84	0.036		
	PVC-4.5-G-30mL-1	26% PVC + 29% Cyanex 272 + 5% TBP + 40% BTS	80 ± 7	74	0.051		

UK Research

and Innovation

 \succ Changing the CTA base polymer for PVC, we are able to maintain the extractant inside the polymer structure avoiding the formation of blue precipitate and also increasing Co recovery from 74% to 82%.

Co-funded by

the European Union

ental ns 085 M Co etic tate SO₁ 1.5 M 2 mL/min

Feed and strip solutions after experiment with less blue precipitation.

Extractant Evaluation

PIM development and characterization

PIM evaluation

28

Ni

58.693

Feed and strip solutions after experiment, there was no color change

Membrane	Composition	Thickness (µm)	% Extraction Co(II) / 30h	Initial flux J _o (mol/m²·h)	Experimental conditions	
PIM-10.1-A-10mL	30 % CTA + 40 % LIX-84I + 30 % TBP	40 ± 4	60	0.026	<u>Feed</u> : 0.0085 M Ni pH 6 (acetic acid/acetate	
PIM-10.1-B-10mL	30 % CTA + 40 % LIX-84I + 30 % 2NPOE	60 ± 14	0.5	0.001	buffer) <u>Strip</u> : H ₂ SO ₄ 1.5 M <u>Flow</u> : 152 mL/min	
PIM-10.1-C-10mL	30 % CTA + 40 % LIX-84I + 30 % TBEP	33 ± 7	0.2	0.005		
PIM-10.1-D-10mL	30 % CTA + 40 % LIX-84I + 30 % DOA	33 ± 4	0.1	0.005		

- Versatic acid PIM did not exhibit nickel, extraction ability at pH 7 without the addition of the acetic acid/acetate buffer.
- Different test with LIX-84I + Several plasticizers (2NPOE,TBEP, DOA and TBP)
- The membrane PIM-10-A with LIX84-I and TBP presents good recovery rates for Ni

UK Research

and Innovation

ŔÏ

the European Union

Extractant

Evaluation

27

PIM development and

characterization

Liquid membrane evaluation: Hollow fiber PIMs

and Innovation

ŔĨ

the European Union

Agreement Nº 101058359. Isle Utilities Ltd participant in Horizon Europe Project BATRAW is supported by UKRI. These results reflect the author's view, and the Commission is not responsible for any use that may be made of the information it contains.

characterization

PIM development and

Selectivity results using ORANO PLS

Liquor	ORANO	PLS	LS ORANO_Mn_Raffinate			ORANO_O	Co_Raffinate				
рН	6.58 6.60	6.56	2.78	2.77	2.79	6.67 6	6.70 6.70				
	6,6		2,8			6,7					
Liquor Code		l	.i (g/L)	Na (g/L)	K (g/L)	Co (g/L)	Mn (g/L)	Ni (g/L)	Al (g/L)	Cu (g/L)	Fe (g/L)
OR	ANO_PLS_1		5.3	30.6	0.3	8.6	10.4	19.2	<0.01	<0.001	<0.001
OR	ANO_PLS_2		4.6	27.3	0.2	7.5	9.4	18.9	<0.01	<0.001	<0.001
OR	ANO_PLS_3		5.0	29.7	0.2	8.4	10.0	18.8	<0.01	<0.001	<0.001
Mn <u>.</u>	_Raffinate_1		4.2	37.2	0.1	6.8	<0.001	19.4	<0.01	<0.001	<0.001
Mn <u>.</u>	_Raffinate_2		5.5	39.8	0.2	7.3	<0.001	18.8	<0.01	<0.001	<0.001
Mn <u>.</u>	_Raffinate_3		4.6	41.3	0.2	7.3	<0.001	19.1	<0.01	<0.001	<0.001
Co	_Raffinate_1		4.7	50.2	0.2	<0.001	<0.001	18.5	<0.01	<0.001	<0.001
Co	_Raffinate_2		5.4	56.3	0.3	<0.001	<0.001	21.6	<0.01	<0.001	<0.001
Co	_Raffinate_3		4.7	48.9	0.3	<0.001	<0.001	18.8	<0.01	<0.001	<0.001

- Cobalt in Mn_Raffinate
- Nickel in Co_Raffinate

•Membrane selection:

•*Mn_Raffinate:* PVC-4.5-G-10ml-1 membrane, efficient for Co

recovery and selective against Ni.

•Co_Raffinate: PIM-10.1-A-10ml membrane, specific for Ni

recovery.

Extractant

Evaluation

PIM development and characterization

Selectivity results using ORANO LEACHEATES

•Mn_Raffinate Evaluation:

- •24% Co recovery with PVC-4.5-G-10ml-1 after 24h.
- •The pinkish color in the stripping stream indicated the presence of Co^{2^+} ions.
- Recovery dropped from 84% (synthetic) to 24% (liquor) due to Cyanex-272 acidifying the pH from 6 to 1.5, halting Co transport.

Synthetic solutions used an acetate buffer for pH stability, which is impractical for larger-scale systems with higher volumes.

Co-funded by

the European Union

30 25 20 15 10 5 0

•Co_Raffinate Evaluation:

- 13% Ni recovery with PIM-10.1-A-10ml after 24h.
- Recovery was lower (60% vs. 13%) between synthetic and liquor streams due to the absence of a buffer in the liquor, leading to less pH stability and reduced metal transport efficiency.

RESULTS

UK Research

and Innovation

- 1,74 g of Cobalt y 2,8 g of Nickel transfered in 24h.
- <u>37 g/m²·h Co and 60 g/m²·h Ni</u>

Miguel Aguilar Researcher at LEITAT Technological Center

Thank you for your attention!

Special acknowledgements to Maria Uriburu

